3.1.14 \(\int \frac {\tan (d+e x)}{\sqrt {a+b \tan (d+e x)+c \tan ^2(d+e x)}} \, dx\) [14]

3.1.14.1 Optimal result
3.1.14.2 Mathematica [C] (verified)
3.1.14.3 Rubi [A] (verified)
3.1.14.4 Maple [B] (warning: unable to verify)
3.1.14.5 Fricas [B] (verification not implemented)
3.1.14.6 Sympy [F]
3.1.14.7 Maxima [F(-2)]
3.1.14.8 Giac [F(-1)]
3.1.14.9 Mupad [F(-1)]

3.1.14.1 Optimal result

Integrand size = 31, antiderivative size = 294 \[ \int \frac {\tan (d+e x)}{\sqrt {a+b \tan (d+e x)+c \tan ^2(d+e x)}} \, dx=\frac {\sqrt {a-c-\sqrt {a^2+b^2-2 a c+c^2}} \text {arctanh}\left (\frac {a-c-\sqrt {a^2+b^2-2 a c+c^2}+b \tan (d+e x)}{\sqrt {2} \sqrt {a-c-\sqrt {a^2+b^2-2 a c+c^2}} \sqrt {a+b \tan (d+e x)+c \tan ^2(d+e x)}}\right )}{\sqrt {2} \sqrt {a^2+b^2-2 a c+c^2} e}-\frac {\sqrt {a-c+\sqrt {a^2+b^2-2 a c+c^2}} \text {arctanh}\left (\frac {a-c+\sqrt {a^2+b^2-2 a c+c^2}+b \tan (d+e x)}{\sqrt {2} \sqrt {a-c+\sqrt {a^2+b^2-2 a c+c^2}} \sqrt {a+b \tan (d+e x)+c \tan ^2(d+e x)}}\right )}{\sqrt {2} \sqrt {a^2+b^2-2 a c+c^2} e} \]

output
1/2*arctanh(1/2*(a-c-(a^2-2*a*c+b^2+c^2)^(1/2)+b*tan(e*x+d))*2^(1/2)/(a-c- 
(a^2-2*a*c+b^2+c^2)^(1/2))^(1/2)/(a+b*tan(e*x+d)+c*tan(e*x+d)^2)^(1/2))*(a 
-c-(a^2-2*a*c+b^2+c^2)^(1/2))^(1/2)/e*2^(1/2)/(a^2-2*a*c+b^2+c^2)^(1/2)-1/ 
2*arctanh(1/2*(a-c+(a^2-2*a*c+b^2+c^2)^(1/2)+b*tan(e*x+d))*2^(1/2)/(a-c+(a 
^2-2*a*c+b^2+c^2)^(1/2))^(1/2)/(a+b*tan(e*x+d)+c*tan(e*x+d)^2)^(1/2))*(a-c 
+(a^2-2*a*c+b^2+c^2)^(1/2))^(1/2)/e*2^(1/2)/(a^2-2*a*c+b^2+c^2)^(1/2)
 
3.1.14.2 Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 0.11 (sec) , antiderivative size = 173, normalized size of antiderivative = 0.59 \[ \int \frac {\tan (d+e x)}{\sqrt {a+b \tan (d+e x)+c \tan ^2(d+e x)}} \, dx=\frac {-\frac {\text {arctanh}\left (\frac {2 a-i b+(b-2 i c) \tan (d+e x)}{2 \sqrt {a-i b-c} \sqrt {a+b \tan (d+e x)+c \tan ^2(d+e x)}}\right )}{2 \sqrt {a-i b-c}}-\frac {\text {arctanh}\left (\frac {2 a+i b+(b+2 i c) \tan (d+e x)}{2 \sqrt {a+i b-c} \sqrt {a+b \tan (d+e x)+c \tan ^2(d+e x)}}\right )}{2 \sqrt {a+i b-c}}}{e} \]

input
Integrate[Tan[d + e*x]/Sqrt[a + b*Tan[d + e*x] + c*Tan[d + e*x]^2],x]
 
output
(-1/2*ArcTanh[(2*a - I*b + (b - (2*I)*c)*Tan[d + e*x])/(2*Sqrt[a - I*b - c 
]*Sqrt[a + b*Tan[d + e*x] + c*Tan[d + e*x]^2])]/Sqrt[a - I*b - c] - ArcTan 
h[(2*a + I*b + (b + (2*I)*c)*Tan[d + e*x])/(2*Sqrt[a + I*b - c]*Sqrt[a + b 
*Tan[d + e*x] + c*Tan[d + e*x]^2])]/(2*Sqrt[a + I*b - c]))/e
 
3.1.14.3 Rubi [A] (verified)

Time = 0.52 (sec) , antiderivative size = 292, normalized size of antiderivative = 0.99, number of steps used = 7, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.194, Rules used = {3042, 4183, 1369, 25, 1363, 221}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\tan (d+e x)}{\sqrt {a+b \tan (d+e x)+c \tan ^2(d+e x)}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\tan (d+e x)}{\sqrt {a+b \tan (d+e x)+c \tan (d+e x)^2}}dx\)

\(\Big \downarrow \) 4183

\(\displaystyle \frac {\int \frac {\tan (d+e x)}{\left (\tan ^2(d+e x)+1\right ) \sqrt {c \tan ^2(d+e x)+b \tan (d+e x)+a}}d\tan (d+e x)}{e}\)

\(\Big \downarrow \) 1369

\(\displaystyle \frac {\frac {\int -\frac {b-\left (a-c+\sqrt {a^2-2 c a+b^2+c^2}\right ) \tan (d+e x)}{\left (\tan ^2(d+e x)+1\right ) \sqrt {c \tan ^2(d+e x)+b \tan (d+e x)+a}}d\tan (d+e x)}{2 \sqrt {a^2-2 a c+b^2+c^2}}-\frac {\int -\frac {b-\left (a-c-\sqrt {a^2-2 c a+b^2+c^2}\right ) \tan (d+e x)}{\left (\tan ^2(d+e x)+1\right ) \sqrt {c \tan ^2(d+e x)+b \tan (d+e x)+a}}d\tan (d+e x)}{2 \sqrt {a^2-2 a c+b^2+c^2}}}{e}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {\frac {\int \frac {b-\left (a-c-\sqrt {a^2-2 c a+b^2+c^2}\right ) \tan (d+e x)}{\left (\tan ^2(d+e x)+1\right ) \sqrt {c \tan ^2(d+e x)+b \tan (d+e x)+a}}d\tan (d+e x)}{2 \sqrt {a^2-2 a c+b^2+c^2}}-\frac {\int \frac {b-\left (a-c+\sqrt {a^2-2 c a+b^2+c^2}\right ) \tan (d+e x)}{\left (\tan ^2(d+e x)+1\right ) \sqrt {c \tan ^2(d+e x)+b \tan (d+e x)+a}}d\tan (d+e x)}{2 \sqrt {a^2-2 a c+b^2+c^2}}}{e}\)

\(\Big \downarrow \) 1363

\(\displaystyle \frac {\frac {b \left (-\sqrt {a^2-2 a c+b^2+c^2}+a-c\right ) \int \frac {1}{\frac {b \left (a-c+b \tan (d+e x)-\sqrt {a^2-2 c a+b^2+c^2}\right )^2}{c \tan ^2(d+e x)+b \tan (d+e x)+a}-2 b \left (a-c-\sqrt {a^2-2 c a+b^2+c^2}\right )}d\left (-\frac {a-c+b \tan (d+e x)-\sqrt {a^2-2 c a+b^2+c^2}}{\sqrt {c \tan ^2(d+e x)+b \tan (d+e x)+a}}\right )}{\sqrt {a^2-2 a c+b^2+c^2}}-\frac {b \left (\sqrt {a^2-2 a c+b^2+c^2}+a-c\right ) \int \frac {1}{\frac {b \left (a-c+b \tan (d+e x)+\sqrt {a^2-2 c a+b^2+c^2}\right )^2}{c \tan ^2(d+e x)+b \tan (d+e x)+a}-2 b \left (a-c+\sqrt {a^2-2 c a+b^2+c^2}\right )}d\left (-\frac {a-c+b \tan (d+e x)+\sqrt {a^2-2 c a+b^2+c^2}}{\sqrt {c \tan ^2(d+e x)+b \tan (d+e x)+a}}\right )}{\sqrt {a^2-2 a c+b^2+c^2}}}{e}\)

\(\Big \downarrow \) 221

\(\displaystyle \frac {\frac {\sqrt {-\sqrt {a^2-2 a c+b^2+c^2}+a-c} \text {arctanh}\left (\frac {-\sqrt {a^2-2 a c+b^2+c^2}+a+b \tan (d+e x)-c}{\sqrt {2} \sqrt {-\sqrt {a^2-2 a c+b^2+c^2}+a-c} \sqrt {a+b \tan (d+e x)+c \tan ^2(d+e x)}}\right )}{\sqrt {2} \sqrt {a^2-2 a c+b^2+c^2}}-\frac {\sqrt {\sqrt {a^2-2 a c+b^2+c^2}+a-c} \text {arctanh}\left (\frac {\sqrt {a^2-2 a c+b^2+c^2}+a+b \tan (d+e x)-c}{\sqrt {2} \sqrt {\sqrt {a^2-2 a c+b^2+c^2}+a-c} \sqrt {a+b \tan (d+e x)+c \tan ^2(d+e x)}}\right )}{\sqrt {2} \sqrt {a^2-2 a c+b^2+c^2}}}{e}\)

input
Int[Tan[d + e*x]/Sqrt[a + b*Tan[d + e*x] + c*Tan[d + e*x]^2],x]
 
output
((Sqrt[a - c - Sqrt[a^2 + b^2 - 2*a*c + c^2]]*ArcTanh[(a - c - Sqrt[a^2 + 
b^2 - 2*a*c + c^2] + b*Tan[d + e*x])/(Sqrt[2]*Sqrt[a - c - Sqrt[a^2 + b^2 
- 2*a*c + c^2]]*Sqrt[a + b*Tan[d + e*x] + c*Tan[d + e*x]^2])])/(Sqrt[2]*Sq 
rt[a^2 + b^2 - 2*a*c + c^2]) - (Sqrt[a - c + Sqrt[a^2 + b^2 - 2*a*c + c^2] 
]*ArcTanh[(a - c + Sqrt[a^2 + b^2 - 2*a*c + c^2] + b*Tan[d + e*x])/(Sqrt[2 
]*Sqrt[a - c + Sqrt[a^2 + b^2 - 2*a*c + c^2]]*Sqrt[a + b*Tan[d + e*x] + c* 
Tan[d + e*x]^2])])/(Sqrt[2]*Sqrt[a^2 + b^2 - 2*a*c + c^2]))/e
 

3.1.14.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 221
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x 
/Rt[-a/b, 2]], x] /; FreeQ[{a, b}, x] && NegQ[a/b]
 

rule 1363
Int[((g_) + (h_.)*(x_))/(((a_) + (c_.)*(x_)^2)*Sqrt[(d_.) + (e_.)*(x_) + (f 
_.)*(x_)^2]), x_Symbol] :> Simp[-2*a*g*h   Subst[Int[1/Simp[2*a^2*g*h*c + a 
*e*x^2, x], x], x, Simp[a*h - g*c*x, x]/Sqrt[d + e*x + f*x^2]], x] /; FreeQ 
[{a, c, d, e, f, g, h}, x] && EqQ[a*h^2*e + 2*g*h*(c*d - a*f) - g^2*c*e, 0]
 

rule 1369
Int[((g_.) + (h_.)*(x_))/(((a_) + (c_.)*(x_)^2)*Sqrt[(d_.) + (e_.)*(x_) + ( 
f_.)*(x_)^2]), x_Symbol] :> With[{q = Rt[(c*d - a*f)^2 + a*c*e^2, 2]}, Simp 
[1/(2*q)   Int[Simp[(-a)*h*e - g*(c*d - a*f - q) + (h*(c*d - a*f + q) - g*c 
*e)*x, x]/((a + c*x^2)*Sqrt[d + e*x + f*x^2]), x], x] - Simp[1/(2*q)   Int[ 
Simp[(-a)*h*e - g*(c*d - a*f + q) + (h*(c*d - a*f - q) - g*c*e)*x, x]/((a + 
 c*x^2)*Sqrt[d + e*x + f*x^2]), x], x]] /; FreeQ[{a, c, d, e, f, g, h}, x] 
&& NeQ[e^2 - 4*d*f, 0] && NegQ[(-a)*c]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4183
Int[tan[(d_.) + (e_.)*(x_)]^(m_.)*((a_.) + (b_.)*((f_.)*tan[(d_.) + (e_.)*( 
x_)])^(n_.) + (c_.)*((f_.)*tan[(d_.) + (e_.)*(x_)])^(n2_.))^(p_), x_Symbol] 
 :> Simp[f/e   Subst[Int[(x/f)^m*((a + b*x^n + c*x^(2*n))^p/(f^2 + x^2)), x 
], x, f*Tan[d + e*x]], x] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] && EqQ[n 
2, 2*n] && NeQ[b^2 - 4*a*c, 0]
 
3.1.14.4 Maple [B] (warning: unable to verify)

result has leaf size over 500,000. Avoiding possible recursion issues.

Time = 2.30 (sec) , antiderivative size = 9339203, normalized size of antiderivative = 31766.00

\[\text {output too large to display}\]

input
int(tan(e*x+d)/(a+b*tan(e*x+d)+c*tan(e*x+d)^2)^(1/2),x)
 
output
result too large to display
 
3.1.14.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 5045 vs. \(2 (261) = 522\).

Time = 0.81 (sec) , antiderivative size = 5045, normalized size of antiderivative = 17.16 \[ \int \frac {\tan (d+e x)}{\sqrt {a+b \tan (d+e x)+c \tan ^2(d+e x)}} \, dx=\text {Too large to display} \]

input
integrate(tan(e*x+d)/(a+b*tan(e*x+d)+c*tan(e*x+d)^2)^(1/2),x, algorithm="f 
ricas")
 
output
Too large to include
 
3.1.14.6 Sympy [F]

\[ \int \frac {\tan (d+e x)}{\sqrt {a+b \tan (d+e x)+c \tan ^2(d+e x)}} \, dx=\int \frac {\tan {\left (d + e x \right )}}{\sqrt {a + b \tan {\left (d + e x \right )} + c \tan ^{2}{\left (d + e x \right )}}}\, dx \]

input
integrate(tan(e*x+d)/(a+b*tan(e*x+d)+c*tan(e*x+d)**2)**(1/2),x)
 
output
Integral(tan(d + e*x)/sqrt(a + b*tan(d + e*x) + c*tan(d + e*x)**2), x)
 
3.1.14.7 Maxima [F(-2)]

Exception generated. \[ \int \frac {\tan (d+e x)}{\sqrt {a+b \tan (d+e x)+c \tan ^2(d+e x)}} \, dx=\text {Exception raised: ValueError} \]

input
integrate(tan(e*x+d)/(a+b*tan(e*x+d)+c*tan(e*x+d)^2)^(1/2),x, algorithm="m 
axima")
 
output
Exception raised: ValueError >> Computation failed since Maxima requested 
additional constraints; using the 'assume' command before evaluation *may* 
 help (example of legal syntax is 'assume(4*a*c-b^2>0)', see `assume?` for 
 more deta
 
3.1.14.8 Giac [F(-1)]

Timed out. \[ \int \frac {\tan (d+e x)}{\sqrt {a+b \tan (d+e x)+c \tan ^2(d+e x)}} \, dx=\text {Timed out} \]

input
integrate(tan(e*x+d)/(a+b*tan(e*x+d)+c*tan(e*x+d)^2)^(1/2),x, algorithm="g 
iac")
 
output
Timed out
 
3.1.14.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\tan (d+e x)}{\sqrt {a+b \tan (d+e x)+c \tan ^2(d+e x)}} \, dx=\int \frac {\mathrm {tan}\left (d+e\,x\right )}{\sqrt {c\,{\mathrm {tan}\left (d+e\,x\right )}^2+b\,\mathrm {tan}\left (d+e\,x\right )+a}} \,d x \]

input
int(tan(d + e*x)/(a + b*tan(d + e*x) + c*tan(d + e*x)^2)^(1/2),x)
 
output
int(tan(d + e*x)/(a + b*tan(d + e*x) + c*tan(d + e*x)^2)^(1/2), x)